Limbform: a functional ontology-based database of limb regeneration experiments
نویسندگان
چکیده
SUMMARY The ability of certain organisms to completely regenerate lost limbs is a fascinating process, far from solved. Despite the extraordinary published efforts during the past centuries of scientists performing amputations, transplantations and molecular experiments, no mechanistic model exists yet that can completely explain patterning during the limb regeneration process. The lack of a centralized repository to enable the efficient mining of this huge dataset is hindering the discovery of comprehensive models of limb regeneration. Here, we introduce Limbform (Limb formalization), a centralized database of published limb regeneration experiments. In contrast to natural language or text-based ontologies, Limbform is based on a functional ontology using mathematical graphs to represent unambiguously limb phenotypes and manipulation procedures. The centralized database currently contains >800 published limb regeneration experiments comprising many model organisms, including salamanders, frogs, insects, crustaceans and arachnids. The database represents an extraordinary resource for mining the existing knowledge of functional data in this field; furthermore, its mathematical nature based on a functional ontology will pave the way for artificial intelligence tools applied to the discovery of the sought-after comprehensive limb regeneration models.
منابع مشابه
A bioinformatics expert system linking functional data to anatomical outcomes in limb regeneration
Amphibians and molting arthropods have the remarkable capacity to regenerate amputated limbs, as described by an extensive literature of experimental cuts, amputations, grafts, and molecular techniques. Despite a rich history of experimental efforts, no comprehensive mechanistic model exists that can account for the pattern regulation observed in these experiments. While bioinformatics algorith...
متن کاملLimb regeneration revisited
The investigation of vertebrate limb regeneration, a favorite topic of early developmental biologists, is enjoying a renaissance thanks to recently developed molecular and genetic tools, as indicated in recent papers in BMC Biology and BMC Developmental Biology. Classical experiments provide a rich context for interpreting modern functional studies.
متن کاملDevelopment of a Combined System Based on Data Mining and Semantic Web for the Diagnosis of Autism
Introduction: Autism is a nervous system disorder, and since there is no direct diagnosis for it, data mining can help diagnose the disease. Ontology as a backbone of the semantic web, a knowledge database with shareability and reusability, can be a confirmation of the correctness of disease diagnosis systems. This study aimed to provide a system for diagnosing autistic children with a combinat...
متن کاملDevelopment of a Combined System Based on Data Mining and Semantic Web for the Diagnosis of Autism
Introduction: Autism is a nervous system disorder, and since there is no direct diagnosis for it, data mining can help diagnose the disease. Ontology as a backbone of the semantic web, a knowledge database with shareability and reusability, can be a confirmation of the correctness of disease diagnosis systems. This study aimed to provide a system for diagnosing autistic children with a combinat...
متن کاملPlanform: an application and database of graph-encoded planarian regenerative experiments
SUMMARY Understanding the mechanisms governing the regeneration capabilities of many organisms is a fundamental interest in biology and medicine. An ever-increasing number of manipulation and molecular experiments are attempting to discover a comprehensive model for regeneration, with the planarian flatworm being one of the most important model species. Despite much effort, no comprehensive, co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Bioinformatics
دوره 30 24 شماره
صفحات -
تاریخ انتشار 2014